Biotransformation of (-)- α -Pinene by *Botrytis cinerea*

Afgan Farooq^{a,b}, Satoshi Tahara^b, M. Iqbal Choudhary^a, Atta-ur-Rahman^a, Zafar Ahmed^a, K. Hüsnü Can Baser^c, and Fatih Demirci^{c,*}

International Centre for Chemical Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, 75270-Karachi, Pakistan Division of Applied Biosciences, Graduate School of Agriculture, Hokkaido University,

060-8589 Sapporo, Japan ^c Medicinal and Aromatic Plant and Drug Research Centre (TBAM), Anadolu University, 26470-Eskisehir, Turkey, Fax: +902223350127. E-mail: fdemirci@anadolu.edu.tr

* Author for correspondence and reprint requests Z. Naturforsch. 57c, 303-306 (2002), received December 3, 2001/January 2, 2002

(–)-α-Pinene, *Botrytis cinerea*, Microbial Transformation (-)- α -Pinene (1), a major constituent of many aromatic plants was biotransformed by the plant pathogenic fungus, Botrytis cinerea to afford three new metabolites, characterized as 3β -hydroxy-(-)- β -pinene (10%) (3), 9-hydroxy-(-)- α -pinene (12%) (4), 4β -hydroxy-(-)- α pinene-6-one (16%) (5) by physical and spectroscopic methods. A known metabolite verbenone (2) was also obtained.